Representation of integers as sums of primes

Alessandro Zaccagnini
joint work with Alessandro Languasco

University of Parma

Bilbao, July 2nd, 2014
The binary Goldbach problem

Goal: give positive lower bound for

\[r_2(n) = \sum_{p_1+p_2=n} 1 \]

when \(n \to +\infty \) through even values
The binary Goldbach problem

Goal: give positive lower bound for

$$r_2(n) = \sum_{p_1+p_2=n} 1$$

when $n \to +\infty$ through even values

The expected value for $r_2(n)$ is

$$\mathcal{S}(n) \frac{n}{\log^2 n} \quad \text{where} \quad \mathcal{S}(n) = 2 \prod_{p>2} \left(1 - \frac{1}{(p-1)^2}\right) \prod_{p|n} \frac{p-1}{p-2}$$
The binary Goldbach problem

Goal: give \textbf{positive} lower bound for

\[r_2(n) = \sum_{p_1 + p_2 = n} 1 \]

when \(n \to +\infty \) through even values

The expected value for \(r_2(n) \) is

\[\mathcal{S}(n) \frac{n}{\log^2 n} \quad \text{where} \quad \mathcal{S}(n) = 2 \prod_{p > 2} \left(1 - \frac{1}{(p-1)^2} \right) \prod_{p \mid n} \frac{p - 1}{p - 2} \]

\(\mathcal{S}(n) \) is an arithmetical correction over the average number of representations
The binary Goldbach problem

Goal: give positive lower bound for

\[r_2(n) = \sum_{p_1 + p_2 = n} 1 \]

when \(n \to +\infty \) through even values

The expected value for \(r_2(n) \) is

\[\mathcal{S}(n) \frac{n}{\log^2 n} \quad \text{where} \quad \mathcal{S}(n) = 2 \prod_{p > 2} \left(1 - \frac{1}{(p-1)^2} \right) \prod_{p \mid n, p > 2} \frac{p-1}{p-2} \]

\(\mathcal{S}(n) \) is an arithmetical correction over the average number of representations

Heuristic: “double” sieve on the possible solutions of \(n = n_1 + n_2 \)
Heuristic based on the sieve of Eratosthenes

	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49	51	53	55	57	59			
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49	51	53	55	57	59				

Removal of 1 class modulo \(p \) if \(p \mid n \), but removal of 2 classes if \(p \nmid n \).

Plausible guess:

\[
R_2(n) \approx n \prod_{p \leq n} \left(1 - \frac{1}{2} - \frac{\omega(p)}{p}\right)
\]

where \(\omega(p) = \begin{cases} 1 & \text{if } p \mid n \\ 2 & \text{if } p \nmid n \end{cases} \)

Right?

A. Zaccagnini (Parma)
Heuristic based on the sieve of Eratosthenes

Plausible guess $r_2(n) \approx n \prod_{p \leq n} \frac{1}{2} - \omega(p)$

where $\omega(p) =
\begin{cases} 1 & \text{if } p | n \\ 2 & \text{if } p \nmid n \end{cases}$
Heuristic based on the sieve of Eratosthenes
Heuristic based on the sieve of Eratosthenes

Remove 1 class mod p if $p | n$, but remove 2 classes if $p \nmid n$.

Plausible guess $r_2(n) \approx n \prod_{p \leq n} 1/2 - \omega(p)$

where $\omega(p) = \begin{cases} 1 & \text{if } p | n \\ 2 & \text{if } p \nmid n \end{cases}$

Right?

A. Zaccagnini (Parma)
Heuristic based on the sieve of Eratosthenes

The binary Goldbach problem

A. Zaccagnini (Parma)
Heuristic based on the sieve of Eratosthenes
Heuristic based on the sieve of Eratosthenes

Remove 1 class mod p if $p \mid n$
Heuristics based on the sieve of Eratosthenes

Remove 1 class mod p if $p | n$, but remove 2 classes if $p \nmid n$
Heuristic based on the sieve of Eratosthenes

Remove 1 class mod p if $p \mid n$, but remove 2 classes if $p \nmid n$

Plausible guess

$$r_2(n) \approx n \prod_{p \leq n^{1/2}} \frac{p - \omega(p)}{p}$$

where

$$\omega(p) = \begin{cases}
1 & \text{if } p \mid n \\
2 & \text{if } p \nmid n
\end{cases}$$
Heuristic based on the sieve of Eratosthenes

Remove 1 class mod p if $p \mid n$, but remove 2 classes if $p \nmid n$

Plausible guess

$$r_2(n) \approx n \prod_{p \leq n^{1/2}} \frac{p - \omega(p)}{p}$$

where

$$\omega(p) = \begin{cases}
1 & \text{if } p \mid n \\
2 & \text{if } p \nmid n
\end{cases}$$

Right?
Heuristic based on the sieve of Eratosthenes, II

Wrong!
Wrong!

Using the sieve once yields an expected formula too large by a factor $2e^{-\gamma}$
Heuristic based on the sieve of Eratosthenes, II

Wrong!

Using the sieve once yields an expected formula too large by a factor $2e^{-\gamma}$

This is a well-known phenomenon: compare the PNT with the value of the Mertens product

$$\prod_{p \leq n^{1/2}} \frac{p-1}{p} \sim \frac{2e^{-\gamma}}{\log n}$$
Heuristic based on the sieve of Eratosthenes, II

Wrong!

Using the sieve once yields an expected formula too large by a factor $2e^{-\gamma}$

This is a well-known phenomenon: compare the PNT with the value of the Mertens product

$$\prod_{p \leq n^{1/2}} \frac{p-1}{p} \sim \frac{2e^{-\gamma}}{\log n}$$

Here we use the sieve twice
Heuristic based on the sieve of Eratosthenes, II

Wrong!

Using the sieve once yields an expected formula too large by a factor $2e^{-\gamma}$

This is a well-known phenomenon: compare the PNT with the value of the Mertens product

$$\prod_{p \leq n^{1/2}} \frac{p - 1}{p} \sim \frac{2e^{-\gamma}}{\log n}$$

Here we use the sieve twice

Taking this into account and using the Mertens theorem as above, after some tidying up, we find the expected asymptotic formula

$$r_2(n) \sim \mathcal{G}(n) \frac{n}{\log^2 n}$$
Weighted number of representations

Technically easier to work with

\[R_2(n) = \sum_{m_1 + m_2 = n} \Lambda(m_1) \Lambda(m_2) \]
Weighted number of representations

Technically easier to work with

\[R_2(n) = \sum_{m_1 + m_2 = n} \Lambda(m_1) \Lambda(m_2) \]

Expected asymptotic formula

\[R_2(n) \sim \mathcal{S}(n)n \]

as \(n \to +\infty \) through even integers
Exceptional set

Let

\[E(X) = \{ n \leq X : n \text{ is even and } r_2(n) = 0 \} \]
Exceptional set

Let

$$\mathcal{E}(X) = \{ n \leq X : n \text{ is even and } r_2(n) = 0 \}$$

Montgomery & Vaughan (1975)

$$|\mathcal{E}(X)| \ll X^{1-\delta} \quad \text{for some } \delta > 0$$
Exceptional set

Let

$$\mathcal{E}(X) = \{n \leq X : n \text{ is even and } r_2(n) = 0\}$$

Montgomery & Vaughan (1975)

$$|\mathcal{E}(X)| \ll X^{1-\delta} \quad \text{for some } \delta > 0$$

- compute (do not estimate) the contribution from the possible “exceptional zero” $\tilde{\beta}$
Exceptional set

Let

\[\mathcal{E}(X) = \{ n \leq X : n \text{ is even and } r_2(n) = 0 \} \]

Montgomery & Vaughan (1975)

\[|\mathcal{E}(X)| \ll X^{1-\delta} \quad \text{for some } \delta > 0 \]

- compute (do not estimate) the contribution from the possible “exceptional zero” \(\tilde{\beta} \)
- use Gallagher’s PNT (very strong in uniformity, even stronger if the exceptional zero exists)
Exceptional set, II

Pintz (2006)

\[|\mathcal{E}(X)| \ll X^{2/3} \]
Pintz (2006)

\[|E(X)| \ll X^{2/3} \]

compute exactly the contribution from “many” zeros of Dirichlet L-functions in a thin region just to the left of $\sigma = 1$
Exceptional set, II

Pintz (2006)

\[|E(X)| \ll X^{2/3} \]

compute exactly the contribution from “many” zeros of Dirichlet L-functions in a thin region just to the left of $\sigma = 1$

Remark

\[\frac{x^\rho}{\rho} \]

is large compared to the size x of the expected main term when
Exceptional set, II

Pintz (2006)

\[|\mathcal{E}(X)| \ll X^{2/3} \]

- compute exactly the contribution from “many” zeros of Dirichlet L-functions in a thin region just to the left of $\sigma = 1$

Remark

\[\frac{x^\rho}{|\rho|} \]

is large compared to the size x of the expected main term when

- $|\rho|$ is small
Exceptional set, II

Pintz (2006)

\[|E(X)| \ll X^{2/3} \]

- compute exactly the contribution from “many” zeros of Dirichlet \(L \)-functions in a thin region just to the left of \(\sigma = 1 \)

Remark

\[\frac{x^\rho}{\rho} \]

is large compared to the size \(x \) of the expected main term when

- \(|\rho| \) is small
- \(1 - \Re(\rho) \) is small
Standard circle method

Fourier-coefficient formula: for \(n \leq N \)

\[
R_2(N) = \int_0^1 S_N(\alpha)^2 e(-n\alpha) \, d\alpha \quad \text{where} \quad S_N(\alpha) = \sum_{m \leq N} \Lambda(m)e(m\alpha)
\]
Standard circle method

Fourier-coefficient formula: for $n \leq N$

$$R_2(N) = \int_0^1 S_N(\alpha)^2 e(-n\alpha) \, d\alpha \quad \text{where} \quad S_N(\alpha) = \sum_{m \leq N} \Lambda(m)e(m\alpha)$$

Heuristic: PNT for progressions implies

$$S_N\left(\frac{a}{q}\right) \approx \frac{\mu(q)}{\phi(q)} N + \text{contribution from zeros of } L\text{-functions}$$

uniformly for small q and $(a, q) = 1$
Standard circle method

Fourier-coefficient formula: for \(n \leq N \)

\[
R_2(N) = \int_0^1 S_N(\alpha)^2 e(-n\alpha) \, d\alpha \quad \text{where} \quad S_N(\alpha) = \sum_{m \leq N} \Lambda(m) e(m\alpha)
\]

Heuristic: PNT for progressions implies

\[
S_N\left(\frac{a}{q}\right) \approx \frac{\mu(q)}{\varphi(q)} N + \text{contribution from zeros of } L\text{-functions}
\]

uniformly for small \(q \) and \((a, q) = 1\). Here we only consider \(L\)-functions associated to characters to modulus \(q \)
Standard circle method

Fourier-coefficient formula: for \(n \leq N \)

\[
R_2(N) = \int_0^1 S_N(\alpha)^2 e(-n\alpha) \, d\alpha \quad \text{where} \quad S_N(\alpha) = \sum_{m \leq N} \Lambda(m)e(m\alpha)
\]

Heuristic: PNT for progressions implies

\[
S_N\left(\frac{a}{q}\right) \approx \frac{\mu(q)}{\phi(q)} N + \text{contribution from zeros of } L\text{-functions}
\]

uniformly for small \(q \) and \((a, q) = 1\). Here we only consider \(L\)-functions associated to characters to modulus \(q \). For \(\eta \) “small” expect

\[
S_N\left(\frac{a}{q} + \eta\right) \approx \frac{\mu(q)}{\phi(q)} \sum_{m \leq N} e(m\eta)
\]
Standard circle method

Fourier-coefficient formula: for \(n \leq N \)

\[
R_2(N) = \int_{0}^{1} S_N(\alpha)^2 e(-n\alpha) \, d\alpha \quad \text{where} \quad S_N(\alpha) = \sum_{m \leq N} \Lambda(m) e(m\alpha)
\]

Heuristic: PNT for progressions implies

\[
S_N\left(\frac{a}{q}\right) \approx \frac{\mu(q)}{\phi(q)} N + \text{contribution from zeros of } L\text{-functions}
\]

uniformly for small \(q \) and \((a, q) = 1 \). Here we only consider \(L\)-functions associated to characters to modulus \(q \). For \(\eta \) “small” expect

\[
S_N\left(\frac{a}{q} + \eta\right) \approx \frac{\mu(q)}{\phi(q)} \sum_{m \leq N} e(m\eta)
\]

Neglect error terms and “large” \(q \)’s: as above, expect

\[
R_2(n) \sim n\mathcal{S}(n)
\]
Goal: Asymptotic formula with “many” terms for

\[\Sigma_0(N) = \sum_{n \leq N} R_2(n) \]
Averages

Goal: Asymptotic formula with “many” terms for

\[\Sigma_0(N) = \sum_{n \leq N} R_2(n) \]

After a rearrangement, this is

\[\Sigma_0(N) = \sum_{n \leq N} \Lambda(n) \psi(N - n) \]
Averages

Goal: Asymptotic formula with “many” terms for

\[\Sigma_0(N) = \sum_{n \leq N} R_2(n) \]

After a rearrangement, this is

\[\Sigma_0(N) = \sum_{n \leq N} \Lambda(n) \psi(N - n) \]

Similar to the function

\[\psi_1(N) = \sum_{n \leq N} \Lambda(n)(N - n) = \int_0^N \psi(t) \, dt \]

that appears in de la Vallée-Poussin’s proof of the PNT
Heuristics

Setting $\psi(x) = x + E(x)$ we find
Heuristic

Setting $\psi(x) = x + E(x)$ we find

$$\Sigma_0(N) = \sum_{n \leq N} \Lambda(n) \psi(N - n)$$
Heuristic

Setting $\psi(x) = x + E(x)$ we find

$$
\Sigma_0(N) = \sum_{n \leq N} \Lambda(n) \psi(N - n) = \sum_{n \leq N} \Lambda(n)(N - n) + \sum_{n \leq N} \Lambda(n)E(N - n)
$$
Heuristic

Setting \(\psi(x) = x + E(x) \) we find

\[
\Sigma_0(N) = \sum_{n \leq N} \Lambda(n) \psi(N - n) = \sum_{n \leq N} \Lambda(n)(N - n) + \sum_{n \leq N} \Lambda(n) E(N - n)
\]

\[
= \int_0^N \psi(t) \, dt + \sum_{n \leq N} \Lambda(n) E(N - n)
\]
Setting $\psi(x) = x + E(x)$ we find

$$
\Sigma_0(N) = \sum_{n \leq N} \Lambda(n) \psi(N - n)
$$

$$
= \sum_{n \leq N} \Lambda(n)(N - n) + \sum_{n \leq N} \Lambda(n)E(N - n)
$$

$$
= \int_0^N \psi(t) \, dt + \sum_{n \leq N} \Lambda(n)E(N - n)
$$

$$
= \frac{1}{2}N^2 + \int_0^N E(t) \, dt + \sum_{n \leq N} \Lambda(n)E(N - n)
$$
Heuristic

Setting $\psi(x) = x + E(x)$ we find

$$\sum_0(N) = \sum_{n \leq N} \Lambda(n)\psi(N-n)$$

$$= \sum_{n \leq N} \Lambda(n)(N-n) + \sum_{n \leq N} \Lambda(n)E(N-n)$$

$$= \int_0^N \psi(t) \, dt + \sum_{n \leq N} \Lambda(n)E(N-n)$$

$$= \frac{1}{2}N^2 + \int_0^N E(t) \, dt + \sum_{n \leq N} \Lambda(n)E(N-n)$$

The explicit formula for ψ implies that $E(x)$ is (essentially) a sum over zeros ρ of the Riemann ζ-function of terms of the form $-x^\rho \rho^{-1}$
Let us compute the total contribution of one such zero ρ: by partial summation
Let us compute the total contribution of one such zero ρ: by partial summation

$$- \frac{1}{\rho} \left(\int_0^N t^\rho \, dt + \sum_{n \leq N} \Lambda(n)(N - n)^\rho \right) = - \frac{N^{\rho+1}}{\rho(\rho + 1)} - \int_0^N \psi(t)(N - t)^\rho \, dt$$
Let us compute the total contribution of one such zero ρ: by partial summation

$$-rac{1}{\rho} \left(\int_0^N t^\rho \, dt + \sum_{n \leq N} \Lambda(n)(N-n)^\rho \right) = -\frac{N^{\rho+1}}{\rho(\rho+1)} - \int_0^N \psi(t)(N-t)^\rho \, dt$$

$$= -\frac{N^{\rho+1}}{\rho(\rho+1)} - \int_0^N (t + E(t))(N-t)^\rho \, dt$$
Let us compute the total contribution of one such zero ρ: by partial summation

$$-\frac{1}{\rho} \left(\int_0^N t^\rho \, dt + \sum_{n \leq N} \Lambda(n)(N-n)^\rho \right) = -\frac{N^{\rho+1}}{\rho(\rho+1)} - \int_0^N \psi(t)(N-t)^\rho \, dt$$

$$= -\frac{N^{\rho+1}}{\rho(\rho+1)} - \int_0^N (t + E(t))(N-t)^\rho \, dt$$

$$= -\frac{N^{\rho+1}}{\rho(\rho+1)} - N^{\rho+1}B(2, \rho)$$

$$- \int_0^N E(t)(N-t)^\rho \, dt$$
Let us compute the total contribution of one such zero ρ: by partial summation

\[- \frac{1}{\rho} \left(\int_0^N t^\rho \, dt + \sum_{n \leq N} \Lambda(n)(N - n)^\rho \right) = - \frac{N^{\rho+1}}{\rho(\rho + 1)} - \int_0^N \psi(t)(N - t)^\rho \, dt \]

\[- \frac{N^{\rho+1}}{\rho(\rho + 1)} - \int_0^N (t + E(t))(N - t)^\rho \, dt \]

\[- \frac{N^{\rho+1}}{\rho(\rho + 1)} - N^{\rho+1} B(2, \rho) \]

\[- \int_0^N E(t)(N - t)^\rho \, dt \]

\[- 2 \frac{N^{\rho+1}}{\rho(\rho + 1)} - \int_0^N E(t)(N - t)^\rho \, dt \]
Let us compute the total contribution of one such zero ρ: by partial summation

$$\frac{1}{\rho} \left(\int_0^N t^\rho \, dt + \sum_{n \leq N} \Lambda(n)(N - n)^\rho \right) = -\frac{N^{\rho + 1}}{\rho(\rho + 1)} - \int_0^N \psi(t)(N - t)^\rho \, dt$$

$$= -\frac{N^{\rho + 1}}{\rho(\rho + 1)} - \int_0^N (t + E(t))(N - t)^\rho \, dt$$

$$= -\frac{N^{\rho + 1}}{\rho(\rho + 1)} - N^{\rho + 1}B(2, \rho) - \int_0^N E(t)(N - t)^\rho \, dt$$

$$= -2 \frac{N^{\rho + 1}}{\rho(\rho + 1)} - \int_0^N E(t)(N - t)^\rho \, dt$$

Formally, this gives the expected “secondary main term” for Σ_0
Hence, we may write

\[\Sigma_0(N) = \frac{1}{2} N^2 - 2 \sum_{\rho} \frac{N^{\rho+1}}{\rho(\rho + 1)} + E_0(N) \]

where \(E_0(N) \) is expected to be small
Conditional results

Under RH

- Fujii (1991)

\[E_0(N) \ll N^{4/3} (\log N)^2 \]
Conditional results

Under RH

- Fujii (1991)

 \[E_0(N) \ll N^{4/3} (\log N)^2 \]

- Goldston (1992)
Conditional results

Under RH

- Fujii (1991)
 \[E_0(N) \ll N^{4/3}(\log N)^2 \]
- Goldston (1992)
Conditional results

Under RH

- Fujii (1991)
 \[E_0(N) \ll N^{4/3}(\log N)^2 \]

- Goldston (1992)

- Bhowmik & Schlage-Puchta (2010)
 \[E_0(N) \ll N(\log N)^5 \]
Conditional results

Under RH

- Fujii (1991)
 \[E_0(N) \ll N^{4/3} (\log N)^2 \]

- Goldston (1992)

- Bhowmik & Schlage-Puchta (2010)
 \[E_0(N) \ll N(\log N)^5 \]

 \[E_0(N) \ll N(\log N)^3 \]
Conditional results

Under RH

- Fujii (1991)
 \[E_0(N) \ll N^{4/3} (\log N)^2 \]

- Goldston (1992)

- Bhowmik & Schlage-Puchta (2010)
 \[E_0(N) \ll N (\log N)^5 \]

 \[E_0(N) \ll N (\log N)^3 \]

Limit of the method (without further hypotheses)
A variant of the circle method

Key ingredient

\[
\max_{x \in [2,N]} \left| \sum_{n \leq y} \left(R_2(n) + n - 2\psi(n) \right) e^{-n/N} \right| \ll N(\log N)^3
\]
A variant of the circle method

Key ingredient

\[
\max_{x \in [2,N]} \left| \sum_{n \leq y} \left(R_2(n) + n - 2\psi(n) \right) e^{-n/N} \right| \ll N(\log N)^3
\]

Use circle method in the original setting of Hardy and Littlewood (1923)

\[
\widetilde{S}_N(\alpha) = \sum_{m \geq 1} \Lambda(m)e^{-n/N}e(m\alpha) = \frac{1}{z} + \widetilde{E}(\alpha)
\]

where \(z = N^{-1} - 2\pi i\alpha \), and \(\widetilde{E} \) is “small”
A variant of the circle method

Key ingredient

\[
\max_{x \in [2,N]} \left| \sum_{n \leq y} \left(R_2(n) + n - 2\psi(n) \right) e^{-n/N} \right| \ll N(\log N)^3
\]

Use circle method in the original setting of Hardy and Littlewood (1923)

\[
\tilde{S}_N(\alpha) = \sum_{m \geq 1} \Lambda(m)e^{-n/N}e(m\alpha) = \frac{1}{z} + \tilde{E}(\alpha)
\]

where \(z = N^{-1} - 2\pi i\alpha\), and \(\tilde{E}\) is “small”

We also set

\[
T(\alpha) = T_y(\alpha) = \sum_{n \leq y} e(n\alpha)
\]
Then

\[\sum_{n \leq y} e^{-n/N} R(n) = \sum_{n \leq y} \int_{-1/2}^{1/2} \tilde{S}(\alpha)^2 e(-n\alpha) \, d\alpha \]
Then

\[
\sum_{n \leq y} e^{-n/N} R(n) = \sum_{n \leq y} \int_{-1/2}^{1/2} \tilde{S}(\alpha)^2 e(-n\alpha) \, d\alpha \\
= \int_{-1/2}^{1/2} \tilde{S}(\alpha)^2 T(-\alpha) \, d\alpha
\]
Then

\[
\sum_{n \leq y} e^{-n/N} R(n) = \sum_{n \leq y} \int_{-1/2}^{1/2} \tilde{S}(\alpha)^2 e(-n\alpha) \, d\alpha
\]

\[
= \int_{-1/2}^{1/2} \tilde{S}(\alpha)^2 T(-\alpha) \, d\alpha
\]

\[
= \int_{-1/2}^{1/2} \frac{T(-\alpha)}{z^2} \, d\alpha + 2 \int_{-1/2}^{1/2} \frac{T(-\alpha)\tilde{E}(\alpha)}{z} \, d\alpha
\]

\[
+ \int_{-1/2}^{1/2} T(-\alpha)\tilde{E}(\alpha)^2 \, d\alpha
\]
Then

\[
\sum_{n \leq y} e^{-n/N} R(n) = \sum_{n \leq y} \int_{-\frac{1}{2}}^{\frac{1}{2}} \tilde{S}(\alpha)^2 e(-n\alpha) \, d\alpha
\]

\[
= \int_{-\frac{1}{2}}^{\frac{1}{2}} \tilde{S}(\alpha)^2 T(-\alpha) \, d\alpha
\]

\[
= \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{T(-\alpha)}{z^2} \, d\alpha + 2 \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{T(-\alpha)\tilde{E}(\alpha)}{z} \, d\alpha
\]

\[
+ \int_{-\frac{1}{2}}^{\frac{1}{2}} T(-\alpha)\tilde{E}(\alpha)^2 \, d\alpha
\]

The first summand gives rise to the main term, the second to the “secondary main term,” since \(\tilde{E}\) is a sum over zeros like \(E(x) = \psi(x) - x\)
Then

\[
\sum_{n \leq y} e^{-n/N} R(n) = \sum_{n \leq y} \int_{-1/2}^{1/2} \tilde{S}(\alpha)^2 e(-n\alpha) \, d\alpha
\]

\[
= \int_{-1/2}^{1/2} \tilde{S}(\alpha)^2 T(-\alpha) \, d\alpha
\]

\[
= \int_{-1/2}^{1/2} \frac{T(-\alpha)}{z^2} \, d\alpha + 2 \int_{-1/2}^{1/2} \frac{T(-\alpha)\tilde{E}(\alpha)}{z} \, d\alpha
\]

\[
+ \int_{-1/2}^{1/2} T(-\alpha)\tilde{E}(\alpha)^2 \, d\alpha
\]

The first summand gives rise to the main term, the second to the “secondary main term,” since \(\tilde{E}\) is a sum over zeros like \(E(x) = \psi(x) - x\)

Technical difficulties due to the use of infinite series
Then

\[
\sum_{n \leq y} e^{-n/N} R(n) = \sum_{n \leq y} \int_{-1/2}^{1/2} \tilde{S}(\alpha)^2 e(-n\alpha) \, d\alpha \\
= \int_{-1/2}^{1/2} \tilde{S}(\alpha)^2 T(-\alpha) \, d\alpha \\
= \int_{-1/2}^{1/2} \frac{T(-\alpha)}{z^2} \, d\alpha + 2 \int_{-1/2}^{1/2} \frac{T(-\alpha)\tilde{E}(\alpha)}{z} \, d\alpha \\
+ \int_{-1/2}^{1/2} T(-\alpha)\tilde{E}(\alpha)^2 \, d\alpha
\]

The first summand gives rise to the main term, the second to the “secondary main term,” since \(\tilde{E}\) is a sum over zeros like \(E(x) = \psi(x) - x\).

Technical difficulties due to the use of infinite series

For future reference, the relevant range for \(\alpha\) is \([-\frac{1}{2}, \frac{1}{2}]\).
Then
\[
\sum_{n \leq y} e^{-n/N} R(n) = \sum_{n \leq y} \int_{-1/2}^{1/2} \tilde{S}(\alpha)^2 e(-n\alpha) \, d\alpha
\]
\[
= \int_{-1/2}^{1/2} \tilde{S}(\alpha)^2 T(-\alpha) \, d\alpha
\]
\[
= \int_{-1/2}^{1/2} \frac{T(-\alpha)}{z^2} \, d\alpha + 2 \int_{-1/2}^{1/2} \frac{T(-\alpha)\tilde{E}(\alpha)}{z} \, d\alpha
\]
\[
+ \int_{-1/2}^{1/2} T(-\alpha)\tilde{E}(\alpha)^2 \, d\alpha
\]

The first summand gives rise to the main term, the second to the “secondary main term,” since \(\tilde{E} \) is a sum over zeros like \(E(x) = \psi(x) - x \)

Technical difficulties due to the use of infinite series

For future reference, the relevant range for \(\alpha \) is \([-\frac{1}{2}, \frac{1}{2}]\)

Yields ET of size \(\ll NL^3 \) (using RH)
Applications

Same technique: improvements on ETs for asymptotics for

$$\sum_{m_1+\cdots+m_k=n} \Lambda(m_1) \cdots \Lambda(m_k)$$

when $k \geq 3$ (using GRH) and $n \equiv k \mod 2$
Applications

Same technique: improvements on ETs for asymptotics for

$$\sum_{m_1 + \cdots + m_k = n} \Lambda(m_1) \cdots \Lambda(m_k)$$

when $k \geq 3$ (using GRH) and $n \equiv k \mod 2$

No averaging over n is needed here
Applications

Same technique: improvements on ETs for asymptotics for

$$\sum_{m_1+\cdots+m_k=n} \Lambda(m_1) \cdots \Lambda(m_k)$$

when $k \geq 3$ (using GRH) and $n \equiv k \mod 2$

No averaging over n is needed here

See Friedlander & Goldston (1997), AL & AZ (2012)
Cesàro averages of $R_2(n)$

Goal: many-term asymptotic formula for

$$\sum_k(N) = \sum_{n \leq N} \left(1 - \frac{n}{N}\right)^k R_2(n)$$

for $k \geq 0$
Cesàro averages of $R_2(n)$

Goal: many-term asymptotic formula for

$$\Sigma_k(N) = \sum_{n \leq N} \left(1 - \frac{n}{N}\right)^k R_2(n)$$

for $k \geq 0$. Success for $k > 1$.

A. Zaccagnini (Parma)
Cesàro averages of $R_2(n)$

Goal: many-term asymptotic formula for

$$\Sigma_k(N) = \sum_{n \leq N} \left(1 - \frac{n}{N}\right)^k R_2(n)$$

for $k \geq 0$. Success for $k > 1$. Let

$$\frac{\Sigma_k(N)}{\Gamma(k+1)} = \frac{N^2}{\Gamma(k+3)} - 2\sum_{\rho} \frac{\Gamma(\rho)}{\Gamma(\rho + k + 2)} N^{\rho + 1}$$

$$+ \sum_{\rho_1} \sum_{\rho_2} \frac{\Gamma(\rho_1)\Gamma(\rho_2)}{\Gamma(\rho_1 + \rho_2 + k + 1)} N^{\rho_1 + \rho_2} + E_k(N)$$
Cesàro averages of $R_2(n)$

Goal: many-term asymptotic formula for

$$\Sigma_k(N) = \sum_{n \leq N} \left(1 - \frac{n}{N}\right)^k R_2(n)$$

for $k \geq 0$. Success for $k > 1$. Let

$$\frac{\Sigma_k(N)}{\Gamma(k+1)} = \frac{N^2}{\Gamma(k+3)} - 2\sum_{\rho} \frac{\Gamma(\rho)}{\Gamma(\rho + k + 2)} N^{\rho + 1}$$

$$+ \sum_{\rho_1} \sum_{\rho_2} \frac{\Gamma(\rho_1)\Gamma(\rho_2)}{\Gamma(\rho_1 + \rho_2 + k + 1)} N^{\rho_1 + \rho_2} + E_k(N)$$

Then (without hypothesis)

$$E_k(N) \ll_k N^{1/2}$$

for $k > 1$
Cesàro averages of $R_2(n)$

Goal: many-term asymptotic formula for

$$\sum_k(N) = \sum_{n \leq N} \left(1 - \frac{n}{N}\right)^k R_2(n)$$

for $k \geq 0$. Success for $k > 1$. Let

$$\frac{\sum_k(N)}{\Gamma(k+1)} = \frac{N^2}{\Gamma(k+3)} - 2 \sum_\rho \frac{\Gamma(\rho)}{\Gamma(\rho+k+2)} N^{\rho+1}$$

$$+ \sum_\rho \sum_{\rho_1} \frac{\Gamma(\rho_1) \Gamma(\rho_2)}{\Gamma(\rho_1 + \rho_2 + k + 1)} N^{\rho_1+\rho_2} + E_k(N)$$

Then (without hypothesis)

$$E_k(N) \ll k N^{1/2}$$

for $k > 1$. Probably true for $k > 1/2$
Notice that smoothing does not remove oscillating terms
Notice that smoothing does not remove oscillating terms

Technique: Laplace transforms

\[\frac{1}{2\pi i} \int_{(a)} v^{-s} e^v \, dv = \frac{1}{\Gamma(s)} \]

where \(\Re(s) > 0 \) and \(a > 0 \)
Notice that smoothing does not remove oscillating terms

Technique: Laplace transforms

\[\frac{1}{2\pi i} \int_{(a)} v^{-s} e^v \, dv = \frac{1}{\Gamma(s)} \]

where \(\Re(s) > 0 \) and \(a > 0 \)

Then

\[\frac{N^k}{\Gamma(k+1)} \sum_k(N) = \sum_{n \leq N} R_2(n) \frac{(N-n)^k}{\Gamma(k+1)} = \frac{1}{2\pi i} \int_{(a)} e^{Nz} z^{-k-1} \tilde{S}(z)^2 \, dz \]
Cesàro averages

Notice that smoothing does not remove oscillating terms

Technique: Laplace transforms

\[
\frac{1}{2\pi i} \int (a) v^{-s} e^v \, dv = \frac{1}{\Gamma(s)}
\]

where \(\Re(s) > 0 \) and \(a > 0 \)

Then

\[
\frac{N^k}{\Gamma(k+1)} \sum_k (N) = \sum_{n \leq N} \frac{R_2(n)(N-n)^k}{\Gamma(k+1)} = \frac{1}{2\pi i} \int (a) e^{Nz} z^{-k-1} \tilde{S}(z)^2 \, dz
\]

Use

\[
\tilde{S}(z) = \sum_{m \geq 1} \Lambda(m) e^{-mz} = \frac{1}{z} - \sum_{\rho} z^{-\rho} \Gamma(\rho) + E(y, a)
\]

where \(E \) is small
Square out \tilde{S} and integrate, using Laplace transform
Square out \tilde{S} and integrate, using Laplace transform

Technical difficulties
Square out \tilde{S} and integrate, using Laplace transform

Technical difficulties

- Exchange series and integrals
Square out \tilde{S} and integrate, using Laplace transform

Technical difficulties

- Exchange series and integrals
- Convergence of double sum over zeros
Square out \tilde{S} and integrate, using Laplace transform

Technical difficulties

- Exchange series and integrals
- Convergence of double sum over zeros

Thank you